Fractal classes of matroids
نویسندگان
چکیده
A minor-closed class of matroids is (strongly) fractal if the number n-element in dominated by excluded minors. We conjecture that when K an infinite field, K-representable strongly fractal. prove sparse paving with at most k circuit-hyperplanes a least three. The minor-closure spikes (with k≥5) satisfies strictly weaker condition: 2t-element However, there are only finitely many minors ground sets odd size.
منابع مشابه
Classes of Matroids
This paper explores which classes of graphs and matroids are k-balanced. A connection between k-balanced graphs and k-balanced matroids was also obtained. In this paper, we continue our study of the class of k-balanced matroids in order to see what matroid operations preserve k-balance. Since strong maps of matroids are defined as analogues of continuous maps of topological spaces, it is natura...
متن کاملStabilizers of Classes of Representable Matroids
Let M be a class of matroids representable over a field F. A matroid N # M stabilizes M if, for any 3-connected matroid M # M, an F-representation of M is uniquely determined by a representation of any one of its N-minors. One of the main theorems of this paper proves that if M is minor-closed and closed under duals, and N is 3-connected, then to show that N is a stabilizer it suffices to check...
متن کاملOn two classes of nearly binary matroids
We give an excluded-minor characterization for the class of matroids M in which M\e or M/e is binary for all e in E(M). This class is closely related to the class of matroids in which every member is binary or can be obtained from a binary matroid by relaxing a circuithyperplane. We also provide an excluded-minor characterization for the second class.
متن کاملStructure in minor-closed classes of matroids
This paper gives an informal introduction to structure theory for minorclosed classes of matroids representable over a fixed finite field. The early sections describe some historical results that give evidence that well-defined structure exists for members of such classes. In later sections we describe the fundamental classes and other features that necessarily appear in structure theory for mi...
متن کاملK-classes for matroids and equivariant localization
To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such classes under direct sum, series and parallel connection and two-sum; these results were previously o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2021
ISSN: ['1090-2074', '0196-8858']
DOI: https://doi.org/10.1016/j.aam.2019.101995